Quality Report SQAS93-003

Preferred Practices for Software Quality
within the Nuclear Weapons Complex

August 1993

Software Quality Assurance Subcommittee
of the
Nuclear Weapons Complex Quality Managers

United States Department of Energy
Albuquerque Operations Office

Abstract

This report presents a strategy for improving software quality within the Nuclear Weapons Complex. A software management program framework of customer requirements, site policy, site processes, and organization-specific methods is recommended. Implementation recommendations for baseline assessment, site policy, and site preferred processes are
included.�
ACKNOWLEDGMENT

The Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Managers initiated Work Item #7 to establish strategies to improve the quality of software within the Nuclear Weapons Complex. This document is a significant result of that work item. The working group and other major contributors to this document are listed below.

		Patty Trellue, SN, Chair
		Tina Heath, OR, Editor
		Phil Bantz, MD
		Jim Bosworth, RF
		Jim Brown, PX
		Barbara Campbell, LL
		Bob Cooper, LL
		Phil Edwards, WH
		Jean Evans, PP
		Emma Jones, OR
		Cathy Kuhn, KC
		Mike Lackner, KC
		Howard Leos, PX
		Ralph Lyons, RF
		Chris Mechels, LA
		Travis Moyer, SR
		Dave Peercy, SN
		Don Schilling, KC
		Melissa Smith, OR
		Ann Stewart, OR
		Lynnie Wienecke, DOE/AL
		
�

Blank Page
�TABLE OF CONTENTS
�TOC \o�Executive Summary	1
ES.1	 Objective	1
ES.2	 Management Program Framework	1
ES.3	 Implementation Recommendations	1
ES.3.1	Site Top-Down Implementation Recommendations	2
ES.3.2	Organizational Bottom-up Implementation Recommendations	2
1.	Introduction	3
1.1	 Objectives	3
1.2	 Benefits	3
1.3	 Overview of This Document	4
1.4	 Owner and Updates	4
2.	Scope	4
2.1	 Applicability to NWC Site	4
2.2	 Audience	5
2.3	 Acronyms	5
2.4	 Terminology	5
3.	Strategy	6
3.1 Customer Software Requirements: Level 1	7
3.2 Site Software Policy: Level 2	7
3.2.1	Software Policy	7
3.2.2	Software Preferred Processes	8
3.3 Site Software Processes: Level 3	8
3.3.1	Software Management Processes	9
3.3.2	Software Engineering Processes	9
3.3.3	Software Assessment Processes	9
3.3.4	Software Process Guidelines	10
3.4 Organization Methods: Level 4	10
3.5 Software Products	11
4.	Implementation	12
4.1	 Site Top-Down Implementation	12
4.1.1	Step 1: Establish a Site Software Policy	12
4.1.2	 Step 2: Define Site Preferred Processes	12
4.2	 Organizational Bottom-up Implementation	15
4.2.1	Step 1: Perform a Baseline Software Assessment	15
4.2.2	Step 2: Activate Process for Continuous Improvement	15
�TABLE OF CONTENTS

APPENDIX A: REFERENCES	A-1
A.1	 Applicable Standards and Policy References	A-1
A.2	 Other References	A-2
APPENDIX B: SOFTWARE ENGINEERING PROCESS TASKS	B-1
B.1	 Example Requirements Process Tasks	B-1
B.2	 Example Design Process Tasks	B-1
B.3	 Example Implementation Process Tasks	B-1
B.4	 Example Test Process Tasks	B-2
B.5	 Example Support Process Tasks	B-2
�

LIST OF ILLUSTRATIONS

Figure 3-1. Software Management Program Framework	6
Figure 3-2. Relationship of Software Process Activities and Products	11

�Executive Summary

ES.1	Objective

This document recommends preferred practices that should improve the quality of software processes and products throughout the Nuclear Weapons Complex (NWC) sites. The improvement comes from the combined efforts of all levels of personnel involved with software at a site, including executive management, software management, software quality personnel, software developers, software maintainers, software testers, and systems personnel - a Total Quality effort. The strategy is to implement the preferred practices, using a graded approach, within a management program framework that incorporates these elements:

(1)	Policy;
(2)	Baseline Assessment;
(3)	Process Improvement;
(4)	Measurement; and
(5)	Feedback.

ES.2	Management Program Framework

Commercial software, custom information systems, weapons systems, and research software all need management strategies that balance cost, criticality, functionality, and quality. Appropriate quality should be built into software products. This document recommends a common software management program framework for each NWC site within which policies and preferred processes can be identified that will have the largest impact upon the quality of the site's managed software. Elements of the framework include:

(1)	Level 1: Customer Requirements;
(2)	Level 2: Site Policy;
(3)	Level 3: Site Processes; and
(4)	Level 4: Organization Methods.

ES.3	Implementation Recommendations

Steps should be taken to implement elements of the management program framework using both site (top-down) and organizational (bottom-up) implementation approaches. Within each NWC site, the implementation steps may differ somewhat depending upon the short- and long-term site goals.

�ES.3.1	Site Top-Down Implementation Recommendations

Step 1: Establish a Site Software Policy
Each site should establish a site-wide software policy that minimally accomplishes the intent of the following statement:

"Software will be managed in accordance with a documented, approved methodology. This management applies to software proposed for use, under development, or being used and maintained regardless of how the software was acquired."

 Step 2: Define Site Preferred Processes
Each site should define site-wide preferred processes for the management, engineering, and quality assurance of its software. These preferred processes should be in the form of guidelines that can be applied to activities throughout the software life cycle and that can be tailored by each individual organization/project. The definition and implementation of such preferred processes will most likely be an evolution of current best practices of site organizations integrated over time with externally accepted best practices. Preferred process categories and recommended process elements include:

�SYMBOL 183 \f "Symbol" \s 12 \h�	Software Management Processes
�SYMBOL 45 \f "Symbol" \s 10 \h�	Develop Software Project Plan
�SYMBOL 45 \f "Symbol" \s 10 \h�	Track Progress of Estimated and Actual Cost and Schedule
�SYMBOL 45 \f "Symbol" \s 10 \h�	Implement a Software Acquisition Management Process
�SYMBOL 183 \f "Symbol" \s 12 \h�	Software Engineering Processes
�SYMBOL 45 \f "Symbol" \s 10 \h�	Develop Software Requirements Specification
�SYMBOL 45 \f "Symbol" \s 10 \h�	Use Formal In-Process Software Reviews for Defect Prevention
�SYMBOL 183 \f "Symbol" \s 12 \h�	Software Process Guidelines
�SYMBOL 45 \f "Symbol" \s 10 \h�	Adopt Software Quality Guidelines and Standards
�SYMBOL 45 \f "Symbol" \s 10 \h�	Adopt Software Documentation Standards
�SYMBOL 183 \f "Symbol" \s 12 \h�	Software Assessment Processes
�SYMBOL 45 \f "Symbol" \s 10 \h�	Assess Current Organization Software Processes
�SYMBOL 45 \f "Symbol" \s 10 \h�	Adopt Long Term Process Improvement Strategy

ES.3.2	Organizational Bottom-up Implementation Recommendations

Step 1: Perform a Baseline Software Assessment
Each organization should perform a baseline software self-assessment. A recommended assessment process is the Software Engineering Institute software capability maturity assessment methodology.

Step 2: Activate Process for Continuous Improvement
Each organization should implement an action plan that prioritizes the major problem areas and has upper management approval.�
1.	Introduction
	
1.1	Objectives

This document recommends a strategy for preferred practices that should improve the quality of software processes and products throughout the Nuclear Weapons Complex (NWC) sites. The primary objective is to provide each NWC site with a strategy for achieving significant improvement in the quality of software acquired, used, developed, and maintained at their NWC site. A secondary objective is to leverage the common elements of this strategy so each NWC site can gain benefit from implementation methods and improvement results at other NWC sites.

The preferred practices for software quality and the implementation strategy are based upon integration of these common elements:

(1)	Policy
	"Establish a site policy for software quality requirements."

(2)	Baseline Assessment
	"Conduct a baseline assessment of current software practices."

(3)	Process Improvement
	"Prioritize software process improvements to comply with site software policy. Establish flexible site software management processes, software engineering processes, software guidelines and standards, and software assessments that allow for implementation of tailored methods, methodologies, and tools at the organization group/project level."

(4)	Measurement
	"Measure improvement from the baseline assessment."

(5)	Feedback
	"Continually improve the software processes through customer feedback mechanisms."

1.2	Benefits

Each NWC site can obtain economic savings and technology sharing with other NWC sites through use of a common strategy for software quality preferred practices. Through such a common strategy, the Department of Energy (DOE) is assured that software is being properly managed as a site resource, and that site software requirements are balanced among cost, timely response, technical performance, and quality. Preferred practices that demonstrate success at one site can be more easily shared with other sites when there is a common strategy.

1.3	Overview of This Document

The applicability of this document to NWC site, intended audience, acronyms, and document-specific terms are described in Section 2. The strategy for improving software quality at NWC sites is based upon a software management program framework that is discussed in Section 3. Some guidance on implementation of the software quality improvement strategy through top-down site and bottom-up organization steps is presented in Section 4. A detailed list of references is in Appendix A. An outline of software engineering process tasks for requirements, design, implementation, test, and support is contained in Appendix B.

The framework in Section 3 includes elements required to be compliant with DOE Orders (references [DOE 1330.1D], [DOE 5700.6C]), as well as other compliance documents (references [QC-1], [QC-2]). As other requirements are identified it should be possible to meet compliance, with little (if any) modification to the framework or implemented preferred practices.

1.4	Owner and Updates

The owner of this document is the NWC SQAS. Each SQAS primary member is the designated owner of any tailored implementation of this document at each associated NWC site. Feedback from each of the NWC sites is encouraged and will be addressed by the SQAS as a whole. As appropriate, work items will be established to update this document to reflect NWC site implementations and software quality process improvements.

2.	Scope

2.1	Applicability to NWC Site

This document is applicable to each NWC site. It should provide a foundation for common implementation of NWC software requirements such as contained in DOE Orders, Nuclear Regulatory Standards, National Standards, and International Standards listed in Appendix A.

The software covered by this document includes, but is not restricted to administrative, systems, technical/scientific, and manufacturing applications. It is intended that the recommended preferred practices for software quality be implemented through a top level site software management program such as discussed in [DOE 1330.1D].

Since each NWC site has unique operational functions, it is important to tailor the framework terminology and implementation guidance provided in this document to each NWC site. This is done through site-specific implementation of the main elements of the strategy.

2.2	Audience

This document is intended to be useful to all personnel at NWC sites who have an investment in software assets. These personnel include executive management, software managers, software developers, software maintainers, software quality assurance personnel, software testers, and systems personnel. This document provides a reasonably simple strategy that these personnel at each NWC site could implement to improve the quality of their software assets and the processes that produce or are dependent upon their software assets.

This document's audience includes, but is not limited to, software quality assurance personnel. This document's recommendations include, but are not limited to, preferred practices for software quality assurance.

2.3	Acronyms

DOE		Department of Energy
IEEE		Institute of Electrical and Electronics Engineers
NWC		Nuclear Weapons Complex
SEI		Software Engineering Institute
SQAS		Software Quality Assurance Subcommittee

2.4	Terminology

Software terminology is defined as in references [IEEE610] and [SQAS-GLOSSARY]. Terminology that is specific to this document is included below:

Nuclear Weapons Site - One of the NWC sites operated by the Department of Energy.

Site Level - The top level of management at a NWC Site.

Organization Level - Any of the line management levels at a NWC Site that represent some organizational entity. This entity may be a project, division, directorate, or a group of functional units.

Software Project - An undertaking involving research, development, procurement, modification or implementation of improvements to resources or systems where software products are a part of the results. Such an undertaking may be part of a project that has product other than software.

3.	Strategy

The recommended software quality improvement strategy is for each site to implement preferred practices, using a graded approach, within a software management program framework such as illustrated in Figure 3-1. This framework includes elements identified in the various software requirements documents such as [DOE 1330.1D], [QC-1], [QC-2], [NQA-1], and [NQA-2 Pt 2.7]. This framework includes three logical groups: customer (e.g., DOE), site (e.g., Lawrence Livermore National Laboratory), and organization/project (e.g., Department 2615, Information Systems Software Support organization, or Secure Recode System project). These three groups interact across the four levels in the framework to provide successively more refined process definition within which site policy and preferred processes can evolve consistent with customer requirements and organization-specific implementation strategies. The elements shown in Figure 3-1 are meant to be representative but not necessarily all inclusive.

�

Figure 3-1. Software Management Program Framework
�
3.1 Customer Software Requirements: Level 1

There are many possible customers, both internal and external, for the software organizations at each NWC site. For the DOE customer, various requirements from [DOE 1330.1D], [QC-1], [QC-2], and [DOE 5700.6C] provide explicit direction and oversight for the site and lower organizational levels.

As an example, [DOE 1330.1D] sets policy for software management that applies to all NWC sites and covers:

(1)	all aspects of software including that being used, developed, purchased, or supported;
(2)	software developed in-house, licensed from a commercial vendor, obtained from another organization, or otherwise obtained; and
(3)	administrative software, system software, scientific/engineering software, and manufacturing-oriented software.

Under [DOE1330.1D], certain software can be exempted, but the rationale must be documented. Such software might include:

	(1)	software embedded in ADP equipment;
	(2)	software embedded integrally in an experiment;
	(3)	turnkey system software; and
	(4)	research (continually changing) software.

Under [DOE 1330.1D], each site must operate its own software management program. The program may provide for the use of several different methodologies. Each methodology used must be documented, and at least one documented methodology must be followed for all software that is not exempted. A methodology includes the use of a life cycle model that integrates defined processes, specific techniques and methods, and applicable tools to facilitate implementation.

3.2 Site Software Policy: Level 2

At the site level, a software policy and guidance for a top-level set of preferred processes should be developed as part of the Site Software Management Plan. The Plan should describe the software product to which the policy applies; provide implementation scope for software process practices, standards, guidelines, and methods; and require use of assessment methods for determining software process improvement.

3.2.1	Software Policy

A software policy is the core element in the top-level Software Management Plan. The software policy should provide the guiding principles upon which lower level organization/project software management decisions are made. The policy should be very explicit as to WHAT is required and WHO is required to be in compliance. The HOW (e.g., implementation details for satisfying the policy) should be left to the lower organization levels within the site. In particular, the policy should address:

(1)	Software Management Requirements; and
(2)	Software Quality Requirements.

3.2.2	Software Preferred Processes

Guidelines for using software methodologies, quality assurance methods, and systematic review and process improvement techniques should be concisely stated in the form of software preferred processes. These preferred processes provide interpretive guidance of the software policy and direction for development of site and organization-specific processes. Typical areas for preferred processes include:

(1)	Software Methodologies;
(2)	Software Quality Engineering;
(3)	Software Quality Control; and
(4)	Systematic Review and Process Improvement.

The SQAS white paper, [SQAS-WP], includes guidance on management's role in improving the effectiveness of software engineering and quality assurance methods. The preferred processes should include such management guidance.

3.3 Site Software Processes: Level 3

The Site Software Processes provide more definitive details for implementing the software policy and preferred processes, and should address: software management processes, software engineering processes, and software assessment processes. Software process guidelines provide details of potential life cycle methodologies, standards, procedures, and tools that are preferred for use by software organizations to implement site policy and processes (reference Figure 3-1 and [SSG]). The strategy is to develop the top-level site software processes that implement customer requirements and site software policy. It may be necessary to establish processes initially at the organization/project level. After the prototype stage and some evolution, one or more top-level versions may be established. As identified in Figure 3-1, the major process areas include: Software Management, Software Engineering, and Software Assessment. Site guidelines can be used to provide more details of the available options. Each process within these major areas should have well-defined:

�SYMBOL 183 \f "Symbol" \s 10 \h�	entry criteria
�SYMBOL 183 \f "Symbol" \s 10 \h�	inputs
�SYMBOL 183 \f "Symbol" \s 10 \h�	process tasks
�SYMBOL 183 \f "Symbol" \s 10 \h�	outputs
�SYMBOL 183 \f "Symbol" \s 10 \h�	exit criteria
�SYMBOL 183 \f "Symbol" \s 10 \h�	measures
�SYMBOL 183 \f "Symbol" \s 10 \h�	documentation

Each of the process tasks should have well-defined:

�SYMBOL 183 \f "Symbol" \s 10 \h�	objectives
�SYMBOL 183 \f "Symbol" \s 10 \h�	dependencies
�SYMBOL 183 \f "Symbol" \s 10 \h�	responsibilities
�SYMBOL 183 \f "Symbol" \s 10 \h�	inputs
�SYMBOL 183 \f "Symbol" \s 10 \h�	entry criteria
�SYMBOL 183 \f "Symbol" \s 10 \h�	task description
�SYMBOL 183 \f "Symbol" \s 10 \h�	verification
�SYMBOL 183 \f "Symbol" \s 10 \h�	exit criteria
�SYMBOL 183 \f "Symbol" \s 10 \h�	outputs
�SYMBOL 183 \f "Symbol" \s 10 \h�	applicable standards and support tools

3.3.1	Software Management Processes

Software management processes should be developed in areas such as Life Cycle Management, Plans and Procedures, Progress Measurement, Cost Estimation, Schedule Estimation, Resource Identification and Allocation, Risk Assessment and Abatement, Quality Control, Configuration Management, and Training. These processes provide site-wide guidance for lower-level organization methods. The products from these software management processes are typically plans such as Software Development, Software Quality, and Software Configuration Management. The references [SSG] and [IEEEstds] include templates for these plans. The site software management processes should include requirements for such documentation products and general procedures for conducting the necessary planning and analysis tasks which produce the documentation. Each organization/project should be free to choose specific methodologies, models, procedures, and tailoring of the product templates consistent with the intent of the site policy and preferred processes.

3.3.2	Software Engineering Processes

Software engineering processes should be developed to cover Requirements, Design, Implementation, Test, and Support. These processes are sequenced and iterated in accordance with a defined software life cycle model. The selected life cycle model and methodologies for the process activities will be dependent upon the software project and should be identified at the organization level.

3.3.3	Software Assessment Processes

To determine process improvement, it is necessary to baseline the current software practices and capability maturity at each NWC site. The capability maturity is based on an assessment across all projects within an organization. The implementation strategy may be to have each organization with applicable software responsibilities conduct a Software Engineering Institute self assessment and develop a practical plan for improvement. The steps to development of an on-going software assessment process should include:

(1)	obtain management support;
	(e.g., management at least one level above organization)
(2)	adopt an assessment methodology;
	(e.g., Software Engineering Institute capability maturity model)
(3)	define a strategy for implementing the assessment methodology;
	(e.g., self-assessment by each software organization/major software project)
(4)	baseline each organization's capability via the implementation strategy;
(5)	prioritize the areas requiring software quality improvement;
	(will be driven by organization-specific improvements)
(6)	establish an approach to improve the top priority areas; and
(7)	continue to reassess each organization's capability using the assessment methodology.

3.3.4	Software Process Guidelines

Detailed guidelines concerning available best practices and other options can also be developed at the site level. These guidelines might cover plans, development and support methodologies, documentation templates, life cycle methods, quality and configuration control techniques, and tool environments in which software can be developed, supported, and used. If an organization does not have a specified software process, or simply needs information in one specific part of a larger process, site software process guidelines provide a good starting place. Tailoring applicable guidelines to specific organization use, provides an efficient alternative to random process development. Examples of such guidelines can be found in [SSG], [KCQA],and [LLQA].

3.4 Organization Methods: Level 4

The site software policy and processes provide requirements and guidelines for each organization. Each organization defines processes and products consistent with the site level processes. For small organizations, the processes and products may vary considerably from the larger organizations. For example, one organization may manage a central computing information systems facility while another organization is concerned with development of real-time weapons software. Although both organizations may implement a Software Quality Plan and a Software Configuration Management system, the implementation may be considerably different. For one- or two-person research and development projects, the software processes and products may be informal, i.e., not contractually required or delivered to a customer. When the software becomes potentially useful to other internal or external customers, then a more rigorous process and formal products may be required. It is important to allow the organizations to define the processes, products, and improvement actions that are most effective for them within general site management and engineering process guidelines.

3.5 Software Products

There are a wide variety of software products. Some software documentation product outlines with thematic guidance for completing the outlines are in references such as [IEEEstds]. These thematic outlines can be tailored/modified for each NWC site by the appropriate software organizations (see references [SSGPR], and [SSG, Volume 2]). Some relationships of software process activities to typical software products is indicated in Figure 3-2.

Software Process Activities��Software
Products�Concept�Requirements�Design�Code�Test�Operation & Support��Software Standards Manual��Use�Use�Use�Use�Use��Software Development Plan�Draft�Complete�Use�Use�Use���Software Quality Plan�Draft�Complete�Use�Use�Use�Use & Update��Software Configuration Management Plan�Draft�Complete�Use�Use�Use�Use & Update��Software Requirements Specification��Draft�Complete�Update�Update�Update��Software Design Document���Draft�Complete�Update�Update��Software Source Code Documentation����Draft�Complete�Update��Software SystemTest Plan��Draft�Draft�Complete�Use�Use & Update��Software Maintenance Plan���Draft�Draft�Complete�Use & Update��Software Users Documents���Draft�Complete�Update�Use & Update��
Legend:	Draft	-	Product version under first level of control
	Complete	-	Product version after most changes have been incorporated
	Update	-	Product version after inserting changes due to current activity
	Use	-	Product version primarily used as source of information

Figure 3-2. Relationship of Software Process Activities and Products
�4.	Implementation

This section provides guidance on how to tailor the strategy outlined in this SQAS document to the individual NWC site/organization/project. Steps should be taken to concurrently implement the proposed strategy from both a site (top-down) level and an organizational (bottom-up) level. Throughout, projects of interest include those in which software is acquired, used, developed, or maintained.

Personnel responsibilities for implementation will depend on the site. One possible scheme is to establish a site-wide quality improvement team to initiate the site software management program and top-down site implementation steps. Representatives from the improvement team could assist in identifying software organizations that might benefit the most from software process improvement. It is recommended that such an improvement team have representatives from most software organizations and be chartered through site executive management approval. Software organizations (perhaps only one as a pilot) represented on the quality improvement team could then initiate their bottom-up organizational implementation steps.

4.1	Site Top-Down Implementation

4.1.1	Step 1: Establish a Site Software Policy

Each site should establish a site-wide software policy that minimally accomplishes the intent of the following statement:

"Software will be managed in accordance with a documented, approved methodology. This management applies to software proposed for use, under development, or being used and maintained regardless of how the software was acquired."

This policy statement on "managing" software forms the basis for further guiding principles in the areas of software engineering and quality assurance processes. These guiding principles on software processes should be included in the site Software Management Plan, and references should be included to any specific site-wide preferred processes.

4.1.2	 Step 2: Define Site Preferred Processes

Each site should define site-wide preferred processes for the management, engineering, and quality assurance of its software. These preferred processes should be in the form of guidelines that can be applied to activities throughout a selected software life cycle and tailored by each individual organization/project. These processes could be developed from existing internal organization best practices or adapted from other recognized external guidelines/standards. The following are a minimal recommended set of preferred processes.

Software Management Processes

	a. Software Project Plan. Each software project should have a software project plan. This plan should indicate the specific methods, activities, schedule, products, and resources for the project. The size and detailed content of the plan depends upon the software project. Project plan guidelines should be written to conform to site and specific organization policies.

	b. Software Cost/Schedule Estimation Tracking. Each software project should develop cost and schedule estimates at well-defined project milestone points. The technical progress of each software project should be tracked against estimated and actual cost and schedule data. Automated software management tools should be used to assist the bookkeeping and presentation of such cost and schedule information.

	c. Software Property Management. A software acquisition management process should be defined for software property acquisition. The process should define approval and tracking authority, and should be based upon software attributes such as application use, criticality, and economic value. Site information systems such as property management and cost accounting should include the capability to process major software elements.

Software Engineering Processes

	a. Software Requirements Specification. A software requirements specification should be required for each software project. This specification should clearly reflect the "customer" perspective on the purpose for the software. The size and detailed content of the specification will depend upon the software project.

For software development, a software requirements specification should be prepared. The specification may vary from a few pages to multiple volumes depending upon the software project and the rigor of software engineering required. For software prototyping efforts, the specification may be informal notes. For commercial software systems (e.g., operating system, data base management system) where efforts are restricted primarily to upgrade installation, the specification probably will not exist at the site, but should exist at the supplier's site. For many commercial packages such as spreadsheets, word processors, and other personal computer software to be used on individual workstations there will be no specification at the site. For software maintenance of existing software, where a specification was not developed, "grandfather" provisions should be defined. These "grandfather" provisions may require that a specification be re-engineered for some software while not for other software depending upon the customer, criticality of use, support impact and other such attributes. For software that is to be acquired from another supplier and used as part of a larger system, a specification for the larger system could serve as the customer requirements document to the supplier.

	b. Software Inspections. The technique of formal software inspections [FAGAN], also called "Formal In-Process Reviews," should be adopted for software development and maintenance projects. The purpose of software inspections is to apply a formal review process for the identification and removal of defects in software products close to the time that the products are first produced. Software inspections are a best practice for preventing defects from migrating into the operational software system. Software inspections should be conducted on software requirements, software design, software source code, and/or software test plans as appropriate for the specific software project. Other documents such as the software development plan, software quality plan, and software configuration management plan can also be inspected. The size, criticality, and external influence of the software project will dictate the extent to which inspections are used.

Software Process Guidelines

	a. Software Process Guidelines and Standards. A set of site software engineering guidelines and standards should be provided to software projects that either do not have customer-prescribed methods or need suggestions as to acceptable software engineering life cycle methods. Examples of such guidelines and standards are in references [SSG], [KCQA], and [LLQA].	

	b. Software Documentation Guidelines and Standards. A set of guidelines and standards for the format and content of software documentation should be adopted. If site standards are not available and resources are not available for the development of such standards, it is recommended that IEEE standards, reference [IEEEstds], be adopted. Such standards can then be tailored to individual software projects. Templates for documentation tailored from IEEE standards are included in references [SSGPR] and [SSG].

Software Assessment Processes

	a. NWC Survey. The Software Quality Assurance Subcommittee conducted a software engineering survey [SQAS-SURVEY] across the NWC in 1989. This survey provided important information to each site as to where they were relative to the use of software methodologies. The software engineering survey provides a comparative analysis capability that can applied across the NWC. Information can be stratified by site and type of software such as administrative/business, system, scientific/engineering, and manufacturing. A similar survey should be periodically repeated throughout the NWC by the SQAS.

	b. Long-Range Improvement. Each site in the NWC should set a long term goal of improving its major software organizations in accordance with the Software Engineering Institute's Capability Maturity Model (reference [SEI1]). The strategy for achieving improvement across the NWC combines use of the NWC survey to compare progress across sites and the organization Software Engineering Institute self-assessments to improve each site.

4.2	Organizational Bottom-up Implementation

4.2.1	Step 1: Perform a Baseline Software Assessment

Each organization that conducts a significant part of its business developing or supporting software should perform a baseline software self-assessment. A recommended assessment process is the Software Engineering Institute software capability maturity assessment methodology. This self-assessment could be performed independently by each organization with the results accumulated into a site view. It may be useful to tailor the Software Engineering Institute methodology to consider only the level 2 and 3 capability maturity criteria. Individual organization short term improvement plans should also support the organization's business concerns and the site's long range improvement plans.

4.2.2	Step 2: Activate Process for Continuous Improvement

Using the results of the baseline assessment, each organization/project should:
(1)	obtain top-level management approval to establish and implement an action plan;
(2)	prioritize the major problem areas and identify the most viable areas for improvement;
(3)	develop an action plan that defines the specific organizational steps required to improve one/two problem areas. Attempt to make the plan "results-oriented," not "activity-oriented." [SCHAF];
(4)	implement the action plan;
(5)	review the results and identify those changes that led to bottom-line improvements and those that did not;
(6)	Expand implementation of successful changes, eliminate changes that were not effective; and
(7)	Establish a new action plan.
�APPENDIX A: REFERENCES

A.1	Applicable Standards and Policy References

[DOE 1330.1D], "Computer Software Management," DOE Order 1330.1D, May 18, 1992.

[DOE 1360.1A], "Acquisition and Management of Computing Resources," DOE Order 1360.1A, May 30, 1986.

[DOE 1360.2A], "Unclassified Computer Security Program," DOE Order 1360.2A, May 20, 1988.

[DOE 1360.3A], "Automatic Data Processing Standards," DOE Order 1360.3A, July 11, 1983.

[DOE 1360.4B], "Scientific and Technical Computer Software," DOE Order 1360.4B, December 31, 1991.

[DOE 5637.1], "Classified Computer Security Program," DOE Order 5637.1, January 29, 1988.

[DOE 5700.6C], "Quality Assurance," DOE Order 5700.6C, August 21, 1991.

[EP401045], "Definition of Computer Software Configuration Items," Interagency Engineering Procedure, September 20, 1990.

[NUREG/CR-4640], Bryant, J., L., and Wilburn, N., P., "Handbook of Software Quality Assurance Techniques Applicable to the Nuclear Industry," August 1987.

[NQA-1], "Quality Assurance Program Requirements for Nuclear Facilities," American National Standards Institute and American Society of Mechanical Engineers, March 31, 1990.

[NQA-2 Pt 2.7], "Quality Assurance Requirements of Computer Software for Nuclear Facility Applications," American National Standards Institute and American Society of Mechanical Engineers, May 31, 1990.

[QC-1], "DOE/AL Quality Policy and Operating Instruction Manual for Product Acceptance," March 30,1992.

[QC-2]	, "DOE/AL Quality Principles and Criteria for Research, Design, Development, and Associated Test Activities Within the DOE Nuclear Weapons Activities," February 22, 1990.
A.2	Other References

[AFSCP 800-14], "Air Force Systems Command Software Quality Indicators," AFSCP 800-14, January 20, 1987.

[AFSCP 800-43], "Air Force Systems Command Software Management Indicators," AFSCP 800-43, January 31, 1986.

[DOD 2167A], "Defense System Software Development," DoD-STD-2167A, February 29, 1988.

[DOD 2168], "Defense System Software Quality Program," DOD-STD-2168, April 29, 1988.

[FAGAN] Fagan, M., E., "Advances in Software Inspections," IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, July 1986, pp 744-751.

[IEEEstds] IEEE Software Engineering Standards Collection: Spring 1991 Edition, Wiley-Interscience, New York, NY, 1991.

[IEEE610] IEEE Std-610.12-1990, "IEEE Standard Glossary of Software Engineering Terminology (ANSI)," IEEE Software Engineering Standards Collection: Spring 1991 Edition, Wiley-Interscience, New York, NY, 1991.

[IEEE1074] IEEE Std-1074-1991, "IEEE Standard for Software Life Cycle Processes," IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

[ISO9000-3], ISO 9000-3:1991, "Quality Management and Quality Assurance Standards - Part 3: Guidelines for the Application of ISO 9001 to the Development, Supply and Maintenance of Software," International Standards Organization (ISO), 1991.

[KCQA] Software Quality Handbook, Kansas City Division, Allied-Signal Aerospace Company, KCP-613-4118, June 1989.

[LLQA] Software Guidelines: Standards, Practices, and Conventions (Draft), Lawrence Livermore National Laboratory Software Guidelines, October 2, 1991.

[MUSA1] Musa,J., Iannino,A., and Okumoto,K., Software Reliability: Measurement, Prediction, Application, McGraw-Hill Series in Software Engineering and Technology, McGraw-Hill Book Company, NY, 1987.

[MUSA2] Musa,J., Ackerman,F., "Quantifying Software Validation: When to Stop Testing?," IEEE Software, May 1989, pp. 19-27.
[OMB-127], OMB Circular A-127, "Financial Management Systems," Office of Management and Business (OMB), December 19, 1984.

[OMB-130], OMB Circular A-130, "Management of Federal Information Resources," Office of Management and Business (OMB), December 12, 1985.

[SCHAF] Schaffer,R., and Thomson,H., "Successful Change Programs Begin with Results," Harvard Business Review, January-February 1992, pp. 80-89.

[SEI1] Paulk,M., Curtis,B., and Chrissis,M., Weber,C., "Capability Maturity Model for Software, Version 1.1" Software Engineering Institute, CMU/SEI-93-TR-24, February 1993.

[SEI2]	Humphrey,W., "A Method for Assessing the Software Engineering Capability of Contractors," Software Engineering Institute, CMU/SEI-87-TR-23, September 1987.

[SEI3] Fowler,P., and Rifkin,S., "Software Engineering Process Group Guide," Software Engineering Institute, CMU/SEI-90-TR-24, September 1990.

[SSG] Sandia Software Guidelines, Volumes 1-5, Sandia National Laboratories.
	Volume 1: Software Quality
	Volume 2: Software Documentation
	Volume 3: Standards, Practices, and Conventions
	Volume 4: Configuration Management
	Volume 5: Tools, Techniques, and Methodologies

[SSGPR] "Software Development Process Methodology," Sandia National Laboratories, Draft, Sandia Software Development Process Management Team, June 23, 1993.

[SQAS-GLOSSARY], SQAS-90-001, "NWC Glossary of Preferred Software Engineering Terminology," Software Quality Assurance Subcommittee, October 1990.

 [SQAS-SURVEY], SQAS90-002, "Software Within the NWC: 1989 Software Engineering Survey," Software Quality Assurance Subcommittee, October 1990.

[SQAS-ABSTRACTS], SQAS91-001, "Abstracts of the NWC Software Quality Assurance Requirements Documents," Software Quality Assurance Subcommittee, June 1991.

[SQAS-WP], SQAS93-002, "Management and Software Quality Assurance: A White Paper," Software Quality Assurance Subcommittee, March 1993.�APPENDIX B: SOFTWARE ENGINEERING PROCESS TASKS

B.1	Example Requirements Process Tasks

�SYMBOL 183 \f "Symbol" \s 10 \h�	Define and schedule requirement analysis activities
�SYMBOL 183 \f "Symbol" \s 10 \h�	Write Software Requirements Specification (SRS) overview and get customer feedback
�SYMBOL 183 \f "Symbol" \s 10 \h�	Prepare draft SRS
�SYMBOL 183 \f "Symbol" \s 10 \h�	Schedule SRS inspection and distribute SRS
�SYMBOL 183 \f "Symbol" \s 10 \h�	Inspect SRS
�SYMBOL 183 \f "Symbol" \s 10 \h�	Resolve inspection issues
�SYMBOL 183 \f "Symbol" \s 10 \h�	Get customer feedback
�SYMBOL 183 \f "Symbol" \s 10 \h�	Approve and distribute SRS
�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain SRS

B.2	Example Design Process Tasks

�SYMBOL 183 \f "Symbol" \s 10 \h�	Gather specification information
�SYMBOL 183 \f "Symbol" \s 10 \h�	Identify consultants and interfaces
�SYMBOL 183 \f "Symbol" \s 10 \h�	Hold design brainstorming meeting
�SYMBOL 183 \f "Symbol" \s 10 \h�	Investigate and evaluation alternative designs
�SYMBOL 183 \f "Symbol" \s 10 \h�	Produce design and define data dictionary
�SYMBOL 183 \f "Symbol" \s 10 \h�	Complete Software Design Document (SDD)
�SYMBOL 183 \f "Symbol" \s 10 \h�	Schedule SDD inspection and distribute SDD
�SYMBOL 183 \f "Symbol" \s 10 \h�	Inspect SDD
�SYMBOL 183 \f "Symbol" \s 10 \h�	Resolve inspection issues
�SYMBOL 183 \f "Symbol" \s 10 \h�	Approve and distribute SDD
�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain SDD

B.3	Example Implementation Process Tasks

�SYMBOL 183 \f "Symbol" \s 10 \h�	Gather specification and design information
�SYMBOL 183 \f "Symbol" \s 12 \h�	Allocate design specification to coding teams
�SYMBOL 183 \f "Symbol" \s 10 \h�	Code and develop unit level tests
�SYMBOL 183 \f "Symbol" \s 12 \h�	Conduct preliminary unit tests
�SYMBOL 183 \f "Symbol" \s 10 \h�	Schedule code inspection and distribute inspection package
�SYMBOL 183 \f "Symbol" \s 10 \h�	Inspect code
�SYMBOL 183 \f "Symbol" \s 10 \h�	Resolve inspection issues
�SYMBOL 183 \f "Symbol" \s 12 \h�	Complete unit tests, file results in unit development folder
�SYMBOL 183 \f "Symbol" \s 12 \h�	Approve and release code to project library
�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain code and unit tests

�B.4	Example Test Process Tasks

�SYMBOL 183 \f "Symbol" \s 10 \h�	Plan software test interval
�SYMBOL 183 \f "Symbol" \s 10 \h�	Identify test environment
�SYMBOL 183 \f "Symbol" \s 10 \h�	Complete Software System Test Plan (SSTP) and Test Cases
�SYMBOL 183 \f "Symbol" \s 10 \h�	Schedule SSTP inspection and distribute SSTP
�SYMBOL 183 \f "Symbol" \s 10 \h�	Inspect SSTP
�SYMBOL 183 \f "Symbol" \s 10 \h�	Resolve inspection issues
�SYMBOL 183 \f "Symbol" \s 10 \h�	Approve and distribute SSTP
�SYMBOL 183 \f "Symbol" \s 10 \h�	Execute tests
�SYMBOL 183 \f "Symbol" \s 10 \h�	Rerun failed tests
�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain SSTP

B.5	Example Support Process Tasks

�SYMBOL 183 \f "Symbol" \s 10 \h�	Identify configuration identification baseline
�SYMBOL 183 \f "Symbol" \s 10 \h�	Define configuration, quality control, project interfaces
�SYMBOL 183 \f "Symbol" \s 10 \h�	Establish support environment
�SYMBOL 183 \f "Symbol" \s 12 \h�	Process change requests
�SYMBOL 45 \f "Symbol" \s 10 \h�	Analyze change request
�SYMBOL 45 \f "Symbol" \s 10 \h�	Make change control decision
�SYMBOL 45 \f "Symbol" \s 10 \h�	Design change
�SYMBOL 45 \f "Symbol" \s 10 \h�	Implement change
�SYMBOL 45 \f "Symbol" \s 10 \h�	Test change
�SYMBOL 45 \f "Symbol" \s 10 \h�	Incorporate change into product version release
�SYMBOL 183 \f "Symbol" \s 10 \h�	Test product version release
�SYMBOL 183 \f "Symbol" \s 10 \h�	Make product version release decision
�SYMBOL 183 \f "Symbol" \s 10 \h�	Approve and Distribute product version
�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain product version

	�PAGE�14�

	�PAGE�i�

	�PAGE�15�

	A - �PAGE�2�

	A - �PAGE�3�

	B - �PAGE�
2
�

	B - �PAGE�1�

