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1. Abstract
Incomplete convergence in numerical simulation such as computational physics simulations and/or Monte Carlo simula-
tions can enter into the calculation of the objective function in an optimization problem, producing noise, bias, and topo-
graphical inaccuracy in the objective function. These affect accuracy and convergence rate in the optimization problem.
This paper is concerned with global searching of a diverse parameter space, graduating to accelerated local convergence
to a (hopefully) global optimum, in a framework that acknowledges convergence uncertainty and manages model resolu-
tion to efficiently reduce uncertainty in the final optimum. In its own right, the global-to-local optimization engine
employed here (devised for noise tolerance) performs better than other classical and contemporary optimization
approaches tried individually and in combination on the “industrial” test problem to be presented.
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3. Introduction, Background, and Nature of the Problem
In several recent optimization applications at Sandia, small-scale stochastic noise arising from finite numerics in compu-
tational physics simulations (seee.g. [1]-[3]) has made the use of classical gradient-based nonlinear programming (NLP)
local optimization algorithms inefficient and in some cases ineffective. As demonstrated in [1] and [4], added noise from
other numerical operations that account for uncertainty in the optimization problem amplifies the need to develop noise-
tolerant optimization strategies. As explained in [1], noise, bias, and topographical inaccuracy in the objective function
are related in a complex and nondirect (sometimes stochastic) way to resolution of the underlying models and sampling
procedures.By understanding how noise, bias, and topographical inaccuracy in the objective function vary with model
resolution the optimization procedure can be managed for an optimal balance of efficiency, accuracy, and reliability.

The nature of the matter is exemplified by Figure 1a which, for various degrees of temporal resolution of the thermal
model used to compute the objective function in the test problem [5], plots 1-D parameter studies of objective function
behavior versus discrete increments in one of the design parameters (fire radiusr) in the optimization problem. As
shown in [1] similar properties exist with respect to the other design variable in the problem. The designations LOOSE,
XSTRICT, etc. of the various curves in the figure correspond to various settings (see Table 1) of the iterative conver-
gence tolerance parameters EPSIT1 and EPSIT2 that control adaptive time-marching in the thermal solver QTRAN[6].
A convergence study in [1] shows that the simulations on which the smooth XSTRICT curve in Figure 1a is based are
effectively fully converged with respect to timestep. As convergence tolerances are relaxed, however, noise and bias
appear in the objective function as the other curves demonstrate. Noise and bias arise from finite numerics in computa-
tional simulations,e.g. truncation of series solutions, noninfinitesimal spatial and temporal discretization, incomplete
convergence in iterative procedures, insufficient (unconverged) sampling, machine roundoff, etc.

The spacing of the data points in Figure 1a is 0.005 inch. This is a much larger “sampling scale” than the finite-differ-
ence step sizes of approximately 0.001 inch used in the final optimization runs in [5]. Since the frequency and severity of
noise increases with decreasing sampling scale (see [1]), the noise experienced by the conjugate-gradient optimizer in
[5] was probably much worse than that displayed in Figure 1a. Nevertheless, the optimizer was able to navigate the
design space to the optimal (minimum) point using XSTRICT function evaluations (FEVs). However, for the more noisy
objective functions the path to the minimum is less direct (more zigzagged, decreasing the efficiency of the process) and
in some cases the noise is debilitating, trapping the optimizer in a numerical minimum that the algorithm mistakes for
the local physical minimum.

When sampled at a large enough scale the objective functions associated with the various model tolerances have nearly
the same “macro” shape as Figure 1b shows. The “macro curve” representations are quadratic curves passing through
the left-most, center, and right-most points of the data in Figure 1a. Despite being based on variously converged simula-
tions the quadratic representations all exhibit similar relative topography or shape.Since it isrelativetopography that is
important in optimization, the vertical bias in the curves is immaterial.This is fortunate because vertical location of such
curves depends not only on numerical parameters in the model, but even more strongly on physical parameters such as
material properties, boundary condition coefficients, geometry parameters, etc. Since large uncertainty exists in many of
these parameters, large uncertainty likewise exists in the vertical location of the objective function, but therelative
topography changes much more slowly with uncertainty in the driving parameters (seee.g.[4] and [7]). As documented
in [1], the minima of the macro curves occur atr values that differ from each other by only a few tenths of a percent and
differ by an average of half a percent from the “target” value ofr (=1.62 in. at the minimum of the XSTRICT curve in
Figure 1a). Furthermore, achieving such accuracy can be very inexpensive. Even the XLOOSE macro curve, which is
based on three XLOOSE simulations each 1/20 the cost of a comparable XSTRICT simulation (see Table 1 –CPU times
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were obtained on a dedicated 200-Mhz SUN ULTRA2 workstation), yields an optimal design value that is within half a
percent of the target optimum. Thus, in optimizationlarge potential savings reside in the weakened requirements (rela-
tive rather than absolute accuracy) on the underlying simulation models.

Obviously the objective function must be sampled on a large enough scale that the amplitude of the local numerical
noise does not seriously undermine the ability of the optimizer to correctly interpret the local physical topography in the
problem. Samping scale, however, is also constrained by the desired resolution in the optimization problem (the smaller
the sampling scale the better the resolution in the design space). Therefore, the local physical topography and the desired
resolution (sampling scale) in the optimization problem determine the level of noise that can be tolerated, which puts
demands on the resolution of the underlying computational models. The difficulty is that noise level must be determined
experimentally and does not correlate dependably with model resolution. For example, the XLOOSE curve in Figure 1a
seems to have noise of less amplitude than the LOOSE curve. In fact, it is shown in [1] that this trend continues, where
progressivelyless temporally resolved X.5XLOOSE and XXLOOSE simulations yield progressivelysmoother such
curves even though the relative topographical accuracy begins to degrade.

Under the competing goals of accuracy and affordability the optimal model is the one with lowest resolution (therefore
the least expensive) that can produce noise within the level ultimately dictated by the desired resolution in the optimiz-
ation problem, but which also delivers “sufficient” relative topographical accuracy. The optimal model, however, is not
knowablea priori, it must be determined by running models of appropriately different resolution at critical points or
phases of the optimization process.The challenge of contemporary optimization is to, in a robust, efficient, and practical
manner, use multiple model resolutions to identify and eliminate inaccuracy and noise problems that could defray the
optimization process (where the causative factors can vary greatly with problem type and even over the design space of
a single problem).Active model management implies decreased uncertainty and increased robustness in the optimiza-
tion process, but can also result in large cost savings relative to running a single model successfully over the spectrum
from start to finish in a global optimization problem.

Table 1 Per-Timestep QTRAN[6] Convergence Tolerance Settings and Associated CPU Time
Requirements at {r,x} = {1.6204 in., 0.78205 in.} = optima found in [5] at XSTRICT tolerances

tolerance
level

EPSIT1
tolerance

EPSIT2
tolerance

CPU time
(min.)

% of
XSTRICT time

number of
timesteps

% of XSTRICT
# of timesteps

XSTRICT 1x10-4 1x10-6 72.68 100.0% 984 100.0%

LOW 1x10+0 1x10-2 10.28 14.1% 171 17.4%

LOOSE 1x10+1 1x10-1 4.31 5.9% 96 9.8%

XLOOSE 1x10+2 1x10-0 3.4 4.7% 90 9.1%

X.5XLOOSE 1x10+3 1x10+1 2.9 4.0% 90 9.1%

XXLOOSE 1x10+4 1x10+2 2.0 2.8% 90 9.1%

Figure 1a Numerical noise in objective function for
various temporal convergence tolerances
in the thermal model. Parameter study is
alongr for x=0.782 in., revealing the opti-
mum identified in [5].

Figure 1b Quadratic “macro curves” based on values
at the endpoints and midpoints of the
curves in Figure 1a.
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Regarding optimization engines, classical gradient-based methods are strictly for local optimization. Noise-tolerance
can be attained with large enough perturbations in finite-differencing operations, but unavoidable inaccuracy in finite-
differenced derivatives contributes to multi-dimensional zigzag inefficiency. Efficiency has been improved with more
contemporary algorithms such as coordinate pattern search (CPS) for local optimization and genetic algorithms (GA) for
global/local stochastic searching (see [3]). Hybrid combinations of NLP, CPS, and GA approaches with different levels
of model refinement (different QTRAN tolerance levels) have proven even more effective. However, these sophisticated
techniques have various free parameters such as sampling scale, sampling strategy, retention, crossover, and mutation
rates, and population sizes and number of generations, etc. that are best resolved by a combination of expert opinion and
experimentation with the problem at hand. Certainly, much research still remains in determining robust and suitable met-
rics for selecting sampling scale for the problem at hand and then optimal matching model resolution, and in determin-
ing when to switch from one model and/or optimization algorithm to the next when conditions change upon advancing
through the design space and/or increasing the resolution requirements in the optimization problem.

In contrast, the optimization scheme advocated in this paper is based on a rather simple structured sampling paradigm[8]
(originally devised for tolerance to noise) that happens to fit nicely into a model-management framework by: 1) naturally
providing prominent decision points in the global-to-local optimization process that are convenient pauses for assessing
model-resolution effects and changing models if necessary; and 2) eliminating or fixing several free parameters in the
overall problem in an effort to increase manageability therefore confidence and executability of the process. The
approach relies on structured sampling combined with a globally C0 continuous, piecewise smooth local representation
of objective function topography with finite-element polynomial interpolation functions of linear to quadratic order (see
e.g. [8]). In the global/local sampling phases the intent of the sampling plan is to maximally reduce ignorance (lack of
global/local knowledge within the design space) with each new sample, while simultaneously maximizing leveragability
in anticipated future rounds of sampling. The sampling plan dictates the sampling scale in the problem autonomously,
progressively refining the scale according to logic-based rules described in [9]. The global-to-local optimization scheme
is found (see [9]) to be significantly more efficient than any of the classical or contemporary optimization approaches
already tried on the “industrial” test problem [5], whether used singly or in combination with multiple models or not.

4. Demonstration of Efficient Uncertainty-Reducing Framework: Global Optimization Phase
Figure 2 shows a 2-D parameter space of fire radiusr and center locationx that is to be searched to find the combination
of parameters that discriminately heats a hypothetical weapon safing device so as to minimize its safing ability as
explained in [5]. Before embarking on the optimization process an assessment must be made of the convergence behav-
ior of the underlying numerical model and the implications for the pending process. A convergence study at the middle
of the design space (presented in [1]) reveals that oscillatory convergence occurs up through the various tolerance levels
up to the asymptotically converged XSTRICT level and that X.5XLOOSE tolerances mark a distinct “knee” in the con-
vergence curve. Oscillatory convergence indicates that the objective function will probably be noisy in the local optimi-
zation phase of the problem. At this initial (global) stage noise is not an issue but topographical inaccuracy is; using a
model with excessivley loose convergence tolerances can identify incorrect “regions of promise” to be interrogated later
in the local optimization phase. It is impossible to tella priori the lowest (thus least expensive) model resolution that
will produce sufficiently accurate topographical information to yield to the same regions of promise that the asymptoti-
cally converged model would. However, lacking more to go on, the X.5XLOOSE model at the knee of the curve is
picked as the “minimal model”. (The appropriateness of this choice will be ascertained later by the framework.)

Beginning the global searching phase of the process, the×‘s in the parameter space in Figure 2 represent the two lowest
diverse global minima of a biquadratic response surface fit to objective function values calculated with X.5XLOOSE
model tolerances for the parameter pairs indicated by the nine Lattice Sampling[8] Level 3 square markers in the figure.
(The✳'s in the figure indicate analogous minima based on simulations employing XXLOOSE tolerances, which are
determined for research purposes here but would not normally be sought.) The minima are obtained by analyzing 10201
response surface values evaluated on a 101x101 grid overlying the design space. Thus, resolution in the design space at
this global phase is 1/100 or 1% of the respective parameter ranges. These “grid-point” optima are therefore subject to a
likely uncertainty of +/- 0.5% in the design space. The circled optima of each set are the primary (lower) minima.

Figure 3 shows updated optima for the piecewise smooth Lattice Sampling Level 4 global response surface correspond-
ing to the indicated discretization of the design space into one central biquadratic “quad”[rilateral] element and four sur-
rounding linear-to-quadratic transition “tri”[angle] elements. Only four new FEVs (at the triangular markers shown) are
required to get to the Level 4 representation from the previous Level 3 representation. Both primary and secondary
optima are seen to shift significantly from Level 3 to Level 4 resolutions of the design space. Figure 4 shows results for
Lattice Sampling Level 5, where resolution of the objective function has been increased substantially by running the
model at the 12 additional points indicated by the solid dots in the figure. A Level 5 representation utilizes four biqua-
dratic quad elements that span the space as indicated. In going from the previous two levels to this level of refinement a
major shift occurs in the locations of both primary and secondary optima. Figure 5 shows results for Lattice Level 6,
where 16 additional samples at locations marked by the open circles in the figure have been added for a total of 41 now
covering the design space. A piecewise smooth C0 response surface consisting of five biquadratic quads, four quadratic
tri’s, and four linear-to-quadratic transition tri’s presides. From Level 5 to Level 6 a major shift occurs in the location of
the secondary optimum but a relatively small shift occurs in the location of the primary optimum (more on this later).

At this juncture consideration should be given to switching to the local optimization phase of the problem. In the present
framework the global searching phase is intended to identifyregions (not points) of design space having high potential



for containing the global optimum. Accordingly, progressive Lattice Sampling refinement need only be pursued until the
locations of optima in the two most recent Lattice Sampling levels differ by 10-20% (as a percentage of full range of the
design variables). The underlying issue is whether global topography is sufficiently resolved that local optimization can
be “safely” pursued. If resources are fixed (not the case here) an earlier switching point might be selected in the desire to
reserve enough resources for the local optimization phase. In any case, the burden of selecting a switching point is eased
by the “quantized” nature of Lattice Sampling, which categorizes decision alternatives into quantified, separate, and
prominent “chunks”. For example, the question before us now is: Should global refinement be continued with Lattice
Level 7, a regular 9x9 array of points over the design space that require 40 new FEVs thereby essentially doubling the
number performed to this point, or can 40 such FEVs be used more profitably in local or semi-local refinement?

In considering this question, from Level 5 to Level 6 the coordinates of the primary minimum change by about -19% in
r and -13% inx as percentages of the full ranges of the design variables (i.e. 5.3 in. inr and 5.9 in. inx). This meets the
criterion recommended above for switching from global to local searching. However, the coordinates of the secondary
minimum change by about 27% inr and the maximum of 100% inx. Obviously the location of the secondary minimum
is not corroborated between Levels 5 and 6. In fact, through the other resolution levels the location of the secondary opti-
mum also varies much more wildly than that of the primary optimum. Moreover, a different interpolation of the sample
points of Lattice Level 6 can be obtained by shifting the interpolation pattern vertically or horizontally by one column or
row of points. The resulting discretization of the design space into quadratic quads and tri’s is depicted in Figure 6. The
associated piecewise-continuous global response surface yields the primary and secondary minima denoted by the+’s in
the figure. The two different interpolations yield absolute differences of 0.5% and 12.5% inr andx for the location of the
primary minimum but respectively 17% and 40% for the secondary minimum. The relative instability of the predicted
location of the secondary minimum raises doubt that a dominant secondary minimum exists in the problem. Indeed, by
plotting the Level 6 response surface (Figure 7) it appears that a unique secondary minimum does not exist. Rather, a
plane of roughly equal secondary minimums exists. Furthermore, the primary minimum appears to be vastly dominant,
having an interpolated value of about -120.8 minutes versus 6.54 minutes for the next lowest diverse minimum. This is
enough evidence to deem the primary optimum as the only viable optimum for further consideration. Thus, 40 FEVs
would best be spent in pursuing this optimum locally rather than in another round of global refinement.

Before proceeding with local optimization the level of uncertainty in the location of the primary optimum must first be
assessed and minimized. The interpolated values of the primary minima for Level 6 are -120.8 minutes for the Figure 5
interpolation and -29 minutes for the Figure 6 interpolation. This large disparity due to interpolation uncertainty alone
suggests extreme, quickly varying topography in this region of the design space. Hence the objective function is
expected to vary significantly over the nonnegligible separation distance between the two points, in which case one min-
imum would dominate the other. Accordingly, two FEVs are performed and indeed the X.5XLOOSE safety margin at
the circled× in Figure 5 is about 9 minutes, while the global minimum at the circled+ in Figure 6 is a much subordi-
nate 23 minutes. A comparison against actual (not interpolated) objective function values at the existing 41 Lattice
points verifies that the circled optimum in Figure 5 marks the lowest confirmed minimum in the design space. We con-
template a next phase of local refinement about this point in pursuit of the global minimum, but want to be reassured that
the very inexpensive but temporally unconverged X.5XLOOSE model has not led us astray. Therefore a parameter study
over model tolerance is run at this location similar to the one initially performed at the center of the design space. It is
found (see [1]) that the XLOOSE model is the least expensive to provide at these two points an essentially constant bias
from asymptotically converged XSTRICT results. Assuming that this trend (constant bias) holds reasonably well over
the entire design space, the XLOOSE model will identify the same global optimum in the design space that the con-
verged XSTRICT model would, at less than 1/20 the cost (cf. Table 1). Accordingly, a cost-efficient maximization of
reliability in the global findings is attained by repeating the foregoing analysis with XLOOSE model tolerances. It hap-
pens that the results lie on the marked X.5XLOOSE primary and secondary optima in Figures 2-6 exactly, corroborating
them to within the +/- 0.5% resolution uncertainty of the design-space grid.

Exact corroboration indicates that the approach taken is perhaps overly conservative and more costly than necessary. To
check (this would not normally be done in anything but “research mode”), the process is repeated with XXLOOSE toler-
ances and the results are marked by the✳'s in Figures 2 - 5. At allLattice Levels the locations of the XXLOOSE second-
ary optima are considerably different from the corroborated results. However, the locations of the dominant primary
minima are acceptably accurate. These results indicate that the approach taken is perhaps a bit conservative, but not
overly so. This check lends support to the convention that the “minimal model” to start with in the global optimization
phase is the one marking the “knee” in a convergence curve generated at the center of the global design space. This
approach toward maximizing reliability of located optima can also be applied in the case of other types of resolution/
convergence uncertainties such as those associated with spatial discretization. Other sources of uncertainty due to vari-
ability and uncertainty of critical model parameters such as material properties, constituitive equation constants, bound-
ary condition coefficients,etc. that can be treated as random variables are best handled with the complementary
optimization-under-uncertainty framework applied in [4] and [7].

5. Demonstration of Efficient Uncertainty-Reducing Framework: Local Optimization Phase
In this framework a “dual-model” strategy is used in the local optimization phase primarily to reduce the chances of
objective function noise leading the process astray, although topographical inaccuracy (if significant on such a small
design-space scale) will also likely be detected and mitigated. The convergence study alluded to above suggested that the
XLOOSE model is the minimal model for global accuracy. Certainly this model will be accurate over the much smaller
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scale of parameter variations anticipated in the local search. Therefore, it is used as the initial “basis” model in the local
optimization problem. Because objective function noise has been found to be effectively uncorrelated with model resolu-
tion (seee.g. [1]), any other model with sufficient local accuracy can serve as the “reference” model in the dual-model
local schema. In light of its ability to replicate XLOOSE results globally, the X.5XLOOSE model is almost assured of
possessing commensurate local accuracy. Therefore it will serve as the initial “reference” model. If during the process of
local convergence meaningful divergence occurs between results of the basis and reference models, an upward switch in
model resolution is enacted. Here an initial upgrade would be from XLOOSE to LOOSE tolerances for the basis model
and from X.5XLOOSE to XLOOSE tolerances for the reference model. It turns out that the results of the X.5XLOOSE
reference model effectively echo those of the XLOOSE basis model throughout the local convergence process. There-
fore, no upward model switch is necessary and only XLOOSE results are presented in the following. (For research pur-
poses a X.5XLOOSE/XXLOOSE initial reference/basis combination was tested and failed at the first decision juncture
below, so the framework would immediately upgrade to the XLOOSE/X.5XLOOSE combination and reuse
X.5XLOOSE samples from the initial unsuccessful step.)

The smallest “drawable” square about the dominant optimum iden-
tified in the global phase is shown in Figure 5. This square contains
two existing sample points as vertices. Leveraging these two and
performing 7 new FEVs attains a Level 3 interpolation over this
subspace as shown in Figure 8. The local minimum on this updated
interpolation surface occurs at the top edge of the subspace as indi-
cated, with uncertainty of 1% of the subspace dimensions. A FEV
is expended to determine if the indicated optimum is lower than the
previous optimum and all new sample values, which it is, having an
XLOOSE value of 2.854 minutes. According to the logic tree pre-
sented in [9], the indicated triangle adjoining the top edge of this
subspace is populated next, leveraging one existing sample point
and requiring 5 new FEVs to attain an updated quadratic represen-
tation of the objective function over this triangular subspace. The
new local minimum over this subspace occurs at the× in the trian-
gular subspace (with uncertainies inr andx of 1% of the lengths of its legs). The FEV value there is 2.607 minutes,
which is the lowest confirmed minimum yet. Continuing on, the triangle is bisected and the “containing” triangle is win-
dowed in on, as shown in Figure 8. Two new samples (FEVs) are required to fully populate it and the resulting response
surface has a minimum at the indicated location. A FEV there yields a safety margin of 2.422 minutes, which is lower
than the previous optimum. However, the circled sample point on the leg of the triangle has a lower value of 2.275 min-
utes, makingit  the optimum in this step and the lowest confirmed minimum yet. Further refinement about this point
could be pursued, but the location of the global optimum has converged sufficiently at this point, having changed by only
0.7% inr and 0.2% inx, with < 1% being the set criterion here.

Finally, the XSTRICT model is run at the global minimum (circled sample point in Figure 8) to determine the asymp-
totic value of the global minimum (2.6182 min.) and verify that bias of the reference model remains relatively constant
in the local phase (which it does, changing by less than 3% of the deepening of the minimum over the local phase). As a
validation check on this framework, when using the fully converged XSTRICT model the global and local phases unfold
as above, identifying the same global-minimum sample point (within uncertainty of +/-0.03% inr andx) as determined
with the multimodel risk managing process illustrated above and costing about 1/10 intotal with convergence studies.
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