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* |mportant Considerations in Experimental
Design for Large Scale Systems

« Resampling Methodol ogy
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o Larger Problems
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In an Ideal (Computing) World

An Optimization Problem

Input x, -

Input x,

An Uncertainty Problem
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In an (Less) Ideal (Computing) World --

We have to Model the Response with a‘ Response Surface’

An Optimization Problem

Input x, |

Input x,

Maximum Value for the Performance

2 Measure at (.75, .92) or (.8, .95) or
M Maybe at (.65, .79)

4

(Response M odeling Uncertainty)

An Uncertainty Problem _I\/I_
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Objective of the Experimental Design

The objective of agood experimental design approach for
computer analyses isto select a set smulations that will
produce the most relevant information at the least expense.
Given well defined project or analysis goals, relevant
Information can often be expressed in terms of the
precision with which performance criterion can be
estimated.

In terms of the previous dides, a good experimental design
will reduce the impact of response modeling uncertainty on
performance measure precision as much as possible for a
fixed number of computer runs.
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Experimental Design Process
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Estimate of the Response and
Response Uncertainty
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|mportant Considerations in Experimental
Design for Large Scale Systems

St
[ Jo| | >
|:| ............ »| Computational|---p fe
Supplemental o Simulation
Input ° Modél
L ocations I S e >
A 2

System Mean Responses

ate of the System
Knowledae

1

il =
-

Py

-
et

o e
.
gl

1o

e

Estimated Uncertainties

(

&/

Relative Likelihood

X2

-

-

X1

®

Distribution of

T O =T

Estimated

the
Performance
Measure

e

(=

At any test location:

1 Istheresponse of any consequence to the performance measure?
2 How well are the responses at this location already known?

3 How likely is this set of inputs?
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Other Approaches to Selecting Runs

Method Input Respo®es Performa rce
U reertainty U rcertainty U rcertainty
SAM RING
M ote C alo Yes N o N o
Latin Hyyrub Yes Yes N o
Importance Sampli ng N o N o Yes
RESFON & SURFACE
RIS N d Generally Yes N o
8ch atic S ufaces N d Generally Yes N o
OTHER
Aahy tca or Reliablity Yes N o Yes
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Approach for the Proposed
M ethodol ogy

1 Construct a probabilistic representation of the response
(stochastic simulation)

2 Select and compare candidate designs for thelir
‘potential relevant information’

3 Use this representation to evaluate the relevant
Information that might be gained for a specific
‘candidate design’

4 Choose the design that indicates the highest potential
for reducing the modeling uncertainty
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Flow Diagram for the Proposed Approach
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‘Stochastic Simulation’ #1

System Response
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Stochastic Simulation (continued)

An ensemble of realizations constructed through
stochastic simulation provides a discrete
approximation to a probability measure over the
response surface -- much as a histogram might
represent a probability density.

One way it might be used is to estimate the performance
criterion using onerealization at atime. This provides
ameans of segregating modeling uncertainty from
variability that can be attributed to non-deterministic
Inputs.

It will be used in another way as well for the proposed
approach
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Selecting Candidate Designs  #2

Xz

Simulated annealing

Evolutionary algorithms

Xy
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Evaluating Candidate Designs #3

Present System Knowledge

Generated
Realizations
R i=1,2,..r

Obtain Hypothetical Data b
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Comparing Candidate Designs #4

* No general approach established yet
* For the uncertainty problem, choose to maximize the

S

ratio %
 For optimization, asimilar metric has been used
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Example

True Response for the Proposed Sub-Assembly

True Response for the Presen! Sub-Assembly
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Example (base-case)

» Objective for the base-case analysis is to determine whether or not
to replace the present sub-assembly with a new design based on
the expected degradation during re-entry

* Thetemperature is assumed to be ‘uniformily distributed’
throughout the specified range

» The frequencies are expected to occur in approximately equal
proportion throughout the specified range

* Thedistribution of degradation is computed as;

p(2)= Uz 0 (3026 TYE () - T) o B, ()

Where c=2, T=10and I(v,,v,)={1 if v,>v,; Ootherwise}.
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Example (other cases)

1 Change the temperature (x,) distribution to atruncated
normal

2 Change the degradation parametersto c=2, T=12

3 Change the problem to finding an ideal temperature
level

4 Change the design sizeto 5 (additional) samples
5 Change the form of the response model
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Response Modeling

True {Unknow) S urface Estirmated Mean Surface
20.,.. 20.,.
B 10 B 10
0. - 0.
1 i 1

Temperature |:| |:|

Temperature |:| |:| Fiency

Estimate M ade using the Response M odd!:
I (%, %;) =Dy + byx, +b,X, +byx X, +10,X + g% + (X, %)
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Contours of Mean and Standard
Deviation

M?an Contours and Daka Locations Fﬂntﬂura of Standard Deviation
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Some of the Possible Responses

Ensamibxle of Realizations
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Base Case Analysis

M?an Contours and Daka Locations
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Normally Distributed Temperature

M?an Contours and Daka Locakions
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More ‘Harsh’ Degradation Parameters

M?an Cantours and Daka Lacations

Cantours of Standard Deviation
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Minimization Problem

M?an Cantours and Daka Lacations Fc} haurs of Skandard Deviakion
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5 Design Points

Temperature

M?an Conktours and Daka Locations
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Alternative Model (Linear)

Mean Contours and Data Locations Contours of Skandard Deviation
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Alternative Model (Kriging)

M?an Caontours and Daka Locations
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Shock Wave Physics

Consider the following shock wave experiment, which can be
performed with explosive configurations, or gas guns, or
other controlled means of acceleration.

V = Impact Velocity

I nputs:
1) Numerical Parameters

2) Impactor Material Parameters

V

3) Target Material Parameters
Outputs:

1) Shock Velocity

2) Particle Velocity

N I m paCtO r” “Targ et” 3) Parameters of the empirical relationship above
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Neutron Generator Application

Inputs:

1) Center of Gravity
2) Bolt Tightness

3) Foam Composition
Outputs:

1) Response to Shock
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Firing Set Behavioral Model
Application
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' r;gln‘:'et:gr;‘g' 9 Output Pulse
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The Inverse Problem

- €«—— Specified Response
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Model Validation

T \
| g S /
S
Candidate designs now include cost, error
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Applications Involving different
Modeling Assumptions

S S, > =1 Responses are based on
S S data from simulations using
models of differing fidelit
S, S s, 9 Yy

S, Responses are based on
S 5 S, alternative conceptual or
1 mathematical models
S3 s,
S, S,
S R=W R +W, R,+W R,
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Summary

« A good computer experimental design can reduce costs
substantially by minimizing response modeling
uncertainty

» The proposed approach accomplishes this task for very
general types of computer analyses

e Testing for low-dimensional problems has provided
promising results; Work on higher dimensional
problemsisin progress.
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