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Obijectives: To select the combination of blends so that
the total amount frit used is minimized

For 21 tank wastes and 3 blends: 66,512,160 possible combinations
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"The greatest of all the accomplishments of
the 20th-century science has been the

discovery of human ignorance”
-- Lewis Thomas




Characterizing Uncertainties In
Waste Blends

e Uncertainties in the glass property models
m Reduce the feasible range of the applicability of the glass property models
+ Viscosity
+ Electrical conductivity
+ Durability
e Uncertainties in the waste composition
m Based on the mean and the RSD data available for a particular tank
m Assume normal probability distributions
m Sample the distribution (LHS or HSS)
m Normalize the mass fraction
m Calculate the mass of each component (from the m.f. and the total mass)




Stochastic Modeling

Quantifying the uncertainties in key input
parameters in terms of probability

distributions.

Sampling the distributions of these key

parameters in an iterative fashion.

Propagating the effects of uncertainties
through the flowsheet.

Applying statistical technigues to analyze the
results.
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Incorporation of Discrete Decision
Variables

Research to date has indicated some potential for
solving these problems when conditions such as
block-separable recourse In the most general
circumstances, we have some results on extensions
of cutting plane methods but practical applications
are still limited.

For Broad applicability, stochastic programming
methods must include discrete variables in a more
comprehensive manner.

— Birge (1997), Sochastic Programming Computation and
Application, Informs Journal of Scientific Computing.
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Important Properties of Sampling Technigues

* Independence / Randomness
e Uniformity

In most applications, the actual relationship between
successive points in a sample has no physical
significance, hence, randomness of the sample for
approximating a uniform distribution is not critical
(Knuth, 1973).

Once It Is apparent that the uniformity properties are
critical to the design of sampling technigues,
constrained or stratified sampling becomes appealing
(Morgan and Henrion, 1990).
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Sample Test Sets

* Five functions * Three correlation structures
 Linear additive * No correlation
« Multiplicative e Correlation = 0.5
e Quadratic e Correlation =0.9
e Exponential

. * Three types of distributions
e Logarithmic

e Uniform
* Two to ten input variables * Normal

» Four sampling techniques * Log normal

Total > 12000 Data Sets
and
Quality control of CSTR
Taguchi approach to Batch Distillation
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Comparison of LHS Versus HSS

(left) Uniform Distribution (right) Lognormal Distribution
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New Sampling Technigque

HSS shows better uniformity than LHS or MCS.

HSS sampling is at least 3 to 100 times faster
than LHS or MCS.

HSS is preferred sampling for stochastic
modeling and/or stochastic optimization.




Recursive Loops

Stochastic
Modeler

=1

Uncertain
Variables

Stochastic Modeling

Optimal

Design .
| Optimizer

Stochastia
Modeler

Model

Decision
Varia_bles

N

Stochastic Optimization




Framework for Stochastic

Optimization
Optimal o _
Design Input e An efficient sampling
OPTIMIZER | methodology

e An efficient interaction
between the optimizer and

/I\ the sampling loop

SAMPLING | o Optimizer
BLOCK

Sampling Loop
for N Samples

Sampling Loop




Optimization and Uncertainty

Uncertainty surface changes at each
optimization iteration

|

Number of samples needed for
each iteration is different.
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Stochastic Annealing
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Scaling the Brownian motion with horizontal scaling factor
of 2 and vertical scaling factor r = 20>
0.5 is the Hurst Exponent
The curves are statistically equivalent, the shaded region
shows the shape properly scaled for different stages.
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The Fractal Model - Approach
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Stochastic Annealing
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Fractal Dimension Approach

e Achieves trade-off between accuracy and computational efficiency
e Computational efficiency up to 90%
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Optimal Waste Blend Configuration

*Det. Case *Stoch. Case *Stoch. Case
*(SA-NLP) *(STA-NLP, C.S)) *(STA-NLP, F.D.)

*Blend-1 «3,45,6,8,9,20 +7,13,14,17,18,19,21 7,13,14,17,18,19,21
*Blend-2 *1,10,11,12,16,19,21 +4,5,6,8,9,16,20 *4,5,6,8,9,16,20

*Blend-3 2,7,13,14,15,17,18 +1,2,3,10,11,12,15 *1,2,3,10,11,12,15

*Min. Frit (Kgs.) 11,028 (12,022 w/unc)*11,307 11,307

«CPU time (secs) 45 mins *4 days *18 hours

Observations:
e Uncertainties affect the optimal blend configuration
e Estimated time for stochastic synthesis with fixed sample framework 20 days




Summary

* An efficient sampling technique for uncertainty analysis
o A faster algorithm for stochastic optimization
 Fractal dimension approach for error characterization

 Application to large scale problems
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The Value of Research: Stochastic
Optimization as a Policy Tool

To minimize expected value of the objective function
(conventional objective in optimization under uncertainty)

To minimize variance--constraint violation-- a proxy for
robustness

To minimize time devoted to research:

Time devoted for research increases understanding, and
therefore decreases the variation (uncertainties) in
guantitative estimates derived from this knowledge.
Qualitative function to capture research has diminishing
marginal returns as uncertainty declines with time spent on
research
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Molecular Design Under Uncertainty
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Modeling & Optimization Under Uncertainty

EPP/OM Program
A Multi-disciplinary Ph.D Program
between College of Engineering &
School of Business
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Multi-objective Optimization
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"Statistics in the hands of an engineer are
like a lamppost to a drunk. They're used

more for support than illumination.”
--Bill Sangster




